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MODEL STUDIES OF HEIMHOLTZ RESONANCES IN ROOMS WITH WINDOWS AND
DOORWAYS

by Gary Koopmann and Howard Pollard
Institute of Sound and Vibration Research
University of Southampton, England

SUMMARY

The cavity resonance of a room enclosed by large windows and open
doors can be set into motion if the windows should suddenly be subjected to
an impulsive load, say, a sonic boom. To determine the conditions and
possible damaging consequences of such a resonance, a study has been conducted
which utilises the method of expressing the windows, alir and common doorway
of two typically joined rooms in terms of equivalent lumped elements. The
resultant dynamic system is treated as a series of coupled Helmholtz resonators
and has as its mathematical description a set of coupled, second order
differential equations. Solutions to these equations have been generated on
an analog computer for several types of impulsive loading conditions.
Experiments were also performed on actual scaled modelsto guide the computer
study. Results describe the conditions for which a maximum of coupling

occurs between the window and room resonances.

PART I: EXPERIMENTAL AND SIMULATED MODEL STUDIES

1. INTRODUCTION

In recent full scale tests [1,2] subjecting buildings to sonic booms,
it was observed that windows backed with open rooms contained in their response
spectra certain low frequency components which could be identified with the
Helmholtz resonances of the rooms. Since conditions favouring such resonances
are quite common in modern dwellings which incorporate large plate glass
windows in their designs, it is becoming increasingly important that the
consequences of the coupling mechanism between a window and its resonant
cavity be better understood. If a large window is backed with a closed room,

the primary effect of the room air is to appear as a stiffness to the window,



the extent of which depends upon the window area and room volume. If,
however, the same window is backed with an open room, any sudden motion of
the window could initiate a Helmholtz resonance in the room. Under the
condition of resonance, the room air would appear to the window as a time
varying stiffness and could conceivably act to amplify the window's response.
The present study was undertaken to determine the particular room conditions
under which possible dynamic amplification of the window response would occur.
The approach used to develop a simplified description of the problem was to
express the window, room alr, and open doorway in terms of equivalent lumped
elements. An appropriate combination of these lumped elements yields a
description of the real system in terms of coupled, second order, differential

equations.
2. LUMPED ELEMENT REPRESENTATION

A good approximation to the dynamical behaviour of a glass window
which is mounted in a rigid support frame is a simply supported flat plate
which has uniformly distributed mass and elasticity. If the centre deflections
of the plate are less than 0.6 of the plate thickness, its dynamic response
to any given load is given by linear plate theory. In cases where the plate's
centre deflection exceeds this amount, Crandall and Kurzweil [3] have noted
that the errors accumulated by extending the linear theory into the non-
linear load-deflection reglons are in the direction of conservatism. For
the uniform pressure loading assumed in this particular investigation, the
centre deflection of the plate, Wmax’ due to the sum contribution of each
individual plate mode, is given in terms of the static loading, q,» the

flexural rigidity, D, and the plate area, ab, by the equation Dﬂ
m+n

=31 _3
16q 2
W= 2] (=1) : (1)
max 7D m=1 n=1 mn (P—lE + 2552

This exact solution provides a basis to which the equivalent deflections of

the lumped element spring can be compared.

In general, lumped element representation is achieved by reguiring

that the parameters defining the lump element possess mechanical properties



which are equivalent to those of the members they represent. For this case,
arranging for equivalence between the plate and lumped element parameters is
a somewhat arbitrary process; but, for purposes of comparing experiment with
theory, a convenient place to start is to require the plate and its
equivalent lumped element to have identical deflections. This choice not
only determines an equivalent area for the lumped element but also provides
it with the same velocities and accelerations at the plate centre. The
latter identity results from the requirement that a lumped element must always
have the same natural frequency as the system it represents. Two further
requirements are needed to fix the relationships between the plate and lumped
element parameters. If both systems have the same potential and kinetic
energies while executing free vibrations, the lumped element parameters of

area, A', mass, m', and stiffness, k', may be written as

AY = 5 (2)

ﬂhD(az + b2)2
ha3b3

k! (L)

where m is the total mass of the plate (see for example Lowery [5]). If such
an equivalent lumped element is subjected to the same uniform static load, Q>
as the real plate deflection given in equation (1), the equivalent deflection

of the spring of the lumped element will be

16 g ahbh
w'oo= °
max n6D(a2 + b2)2

A comparison of the expression for wéax with that given by the
exact solution in equation (1) shows a discrepancy between the two of only
23%, an amount which is within the working limits of this particular study.
In moving from static to time dependent loading, contributions to the
window's centre deflections from higher order modes would of course be
weighted differently depending on the frequency content of the particular
load. However, in this study, the volume displacing modes which could cause
Helmholtz resonances in open rooms are of primary interest and, since contri-

butions from the higher order modes are small compared to the volume displaced



by the fundamental (1,1) mode, their effect can be neglected. Thus, even for
time dependent loadings, the equivalent lumped element representing the actual

window can be considered to be a good approximation.

Consider next the lumped element representation of the air enclosed
by the window and a room. The technique of representing the air in a room in
terms of a lumped element 1s restricted to cases where the pressure disturbances
occur nearly uniformly throughout a room. This restriction can be satisfied
by requiring that the wavelength of the window's fundamental mode be large
when compared to a typical dimension of the room. Under this condition the
action of the air pressure on the fundamental mode of the window has the
effect of opposing the window motion with a force directly proportional to
the window deflection. This force can thus be thought of as a stiffness
acting in series with the bending stiffness of the window. If the cyclic
pressure changes in the room air are small and occur adiabatically, the
acoustic pressure acting to inhibit the window motion can be given in terms
of the air density, po> the speed of sound in air, c,» the equivalent window
area, A', the window deflection, x, and the room volume, V, by the equation [E]

pociA'x
P = — . (5)

The total force, F, of the room air acting on the window is therefore
2, 112
poco(A ) x
Vv

and the equivalent stiffness, k", of the room air becomes

o Pt 0
7 .

Consider last the lumped element representation of the alr mass
contained in a door opening. If the room air is thought of as the stiffness
of the Helmholtz resonator, the air contained in the doorway can be thought
of as its mass. The requirement is that the area of the doorway be small
compared to the area of the wall which contains it so that the air enclosed
by the doorway can behave as an incompressible slug of fluid. A proper

measure of the inertia of this air mass depends largely on the geametry of



the room construction about the doorway and hence would vary considerably for
each different design. For this particular study, the doorway will be
represented by a circular tube which terminates in the planes of the two
walls it joins. Since the volume of air oscillating in the tube extends
slightly beyond its ends [T], it is necessary to correct the tube length,

L, by the amount K vA/m , where K is an empirically determined constant and
A is the cross-sectional area of the tube. The effective tube length, L',

is therefore

L' = L+K/% . (8)

The effective air mass, mé , can then be expressed as

3. MATHEMATICAL MODEL

Using the lumped element representations developed in Section 2,
the equations of motion in the room arrangement shown in Figure la can be
constructed with the following conventions. If the system is treated simply
as having two degrees of freedom, the coordinates for the motion of the
equivalent window mass and the effective alr mass in the connecting tube can

be given as x; and x respectively. Damping losses in the system will be

2
assumed to originate only in the bending stresses in the window and from the
air friction in the connecting tube. Both of these losses will be considered

velocity dependent and thus the forces associated with the window and tube

damping can be given as clil and c2i2 respectively. To write an equation of
motion for each of the two masses, mi and mé, consider first a force balance
on mi under the influence of a suddenly applied force, F(t). The applied

force will be balanced by the inertial force, miil,
the bending stiffness force, kixl, and the room pressure, Pl’ applied over

the damping force, clil,

the equivalent window area, A! The resulting equation 1s given as

1t



F(t) = 'Y+ c.%. + kK'x. + A'P (10)

where p.cC

(Aixl - A2x2) . (11)

Similarly an equation of motion can be written for the mass mé where the

exciting force now becomes the room pressure, P, applied over the tube

area, A2. The balancing forces will be the inertial force, m] the

2 2’
damping force c2 0 and the room pressure, P2,app11ed over the tube area, A2.

The resulting equation is

Phy = ml¥, + ek, + P, (12)
where pociAgxg
P2 = ————V . (13)
2

Substitution of the pressure terms into equations (10)and (12) yields

2, 2
p_cC pCXxX
Flt) = lxl +ogk) + klx 4 (Ai) OVE 1 AlA, on 2
(1k4)
ep 2, o o2x, Aep 2y
and 0 = 1% 4 e+ 2 oo 2 AA " 2P 2
%, 2%0 v Ahy v
2 1
(15)

The equations of motion for the equivalent masses mi and mé are
thus given in a set of coupled, second order, differential equations. Note
that the form of these equations differs slightly from that of the usual
coupled oscillator equations. In this case, the coefficients of the displace-
ment terms contain different combinations of areas and room volumes. The
degree of coupling between the systems components thus depends largely on the
choice of relative room volumes and area ratios. Solutions to these coupled
equations were generated on an E.A.I.580 analog computer. However, to direct
the computer study towards a particular problem, a series of experiments were

first conducted on a real system having a design similar to that shown in



Figure la. The experimental results provided a basis to which the computer
solutions could be compared and also allowed for a check to be made on the

use of the equivalent mass, stiffness and area approximations.
4. PHYSICAL MODEL

The physical model shown in Figure 1b, consisted of two airtight,
identical rooms joined by a common connecting tube. A flanged opening was
machined in the side of one of the rooms to accommodate a window which was
secured with modelling clay. Each room was constructed of 9 mm thick
Zylonite and measured 200 x 300 x 400 mm. These dimensions were chosen to
represent a typical room based on a 1:20 scaling ratio. The acoustic
pressure in each room was monitored by a 3" condenser microphone. The
Perspex connecting tube had a wall thickness of 4 mm, an inside diameter
of 47 mm, and ranged in length from 45 mm to 212 mm. The tube lengths were
chosen such that the ratio of the contained air mass to the adjacent room
stiffness would restrict the range of Helwholtz frequencies to wavelengths
that would be large compared to the longest dimension of the room. Meeting
this restriction ensures that the room pressure will be nearly everywhere
uniform and hence the lumped element approach is a valid one. Each tube end
was indexed so as to form an airtight joint with the adjoining wall. Before
the model was assembled, the effective length of the tube was determined by
the following method. A single Helmholtz resonator was constructed by
separating the second room together with the connecting tube from the first
room containing the window. A flange was then placed around the free end
of the connecting tube to produce end conditions which were identical to
those obtained when the tube was still joined to the wall of the first room.
The simple resonator thus consisted of the room air cavity which could
communicate with the atmosphere through the cylindrical neck of the connecting
tube. Resonance was achieved simply by snappilng one's fingers near the free
end of the connecting tube. The Helmholtz frequency of this system was
determined by analysing the transient response of the room pressure. The
angular frequency of this system is given as

2 c2 A

w o] 2 (16)
(L + K /Az/'n)v




where K is the empirical constant being sought after. For a series of six
different tube lengths, the average K had a value of 1.72 with the maximum
deviation from this mean not exceeding 3%. The effective mass contained in

the connecting tube was thus given as

mb = Ay o (L +1.72 VA /n ) . (17)
The window was constructed of 1 mm thick Vybar and measured

140 mm x 240 mm. Since the window was to be excited electromagnetically,

a small square of iron shim stock was bonded to its centre. On the side

opposite this location, a 2 gm accelerometer was mounted to monitor the window's

accelerations. Recall from Section 2 that the effective area corresponding

to the fundamental mode was a factor of h/n2 times the actual area, A. To

check experimentally this number, the window was excited in its frame with

and without the presence of the first room. With the room present, the

additional stiffness of the room air caused the frequency of the fundamental

mode to shift upward 17.1%. Using the theoretical factor of h/ﬂg in calcula-

ting the increase in window frequency due to the room air stiffness,

0oco(un/n%)2,

ment convinecingly demonstrates the validity of the lumped element approach

the frequency shift should have been 17.0%. This near agree-

to this particuler problem.

The electro-magnet used to excite the window was a standard Post
Office 3000 relay coil which has a D.C. resistance of 50 ohms. The coil was
activated directly from a D.C. power supply which was interrupted with a
low noise switching transistor. A single pulse of a rectangular wave
generator was used to trigger the switching transistor. A monitor of the
current in the coil indicated that the pulse shape of the associated electro-
magnetic force was nearly a ramp function having a pulse width equal to that

of the rectangular triggering pulse.
5. EXPERIMENTAL RESULTS
Experiments were conducted on the model described in Section 4 to

determine the extent of mutual coupling between the impulsively excited win-

dow and the associated Helmholtz resonances in the adjoining rooms. Changes



in the room's resocnant frequencies were achieved by varying the length of the
connecting tubes. For each tube length, the window acceleration and
corresponding room pressure fluctuations were recorded on a four channel
storage oscilloscope. A typical photograph of the data corresponding to
a tube length of 167 mm is shown in Figure 2a. For this particular series
the window responded at nearly a single frequency, thus allowing a good
approximation of the displacement to be written as acceleration/(angular
frequency)e. If the air movement in the tube produces identical pressure
changes in each room, an expression relating window acceleration of room
pressure for this particular case may be obtained from equation (1l) in the
form

2 .

p c”A! X

] 1
p =——‘i—(u—]3)-1> . (18)

1 v 2

Attempts were made to verify this expression quantitatively from Figure 2a
at several points in time along the response curves. The results obtained
fell easily within the limits of the transducer calibration errors of + 0.5 dB
thus providing a good check on part of the governing equations developed in

Section 3.

Information on the spectral content of each of the system's
response data was obtained with the on-line analysis scheme used by the
I.S.V.R. Data Analysis Centre. The data was processed with a Marconi Myriad II
digital computer which was programmed for Fourier (transient) analysis.
Presentations of the results were made with an on-line incremental plotter.
Typical plots of the Fourier representation of the system's responses in the
frequency domain are shown in Figures 2b, 2c and 2d. This particular set of
plots corresponds to the real time response data shown in Figure 2a. The
simplicity of the frequency response curves facilitated the use of the standard
bandwidth method to determine the amount of damping in each of the system's
components. This information was essential for obtaining values for the
coefficients in equations (1%) and (15). In general, the damping of the
window was unaffected by the change in the room resonance frequencies caused
by altering the length of the connecting tubes. However, the damping in the
connecting tube as indicated by the Room 2 pressure response was affected by

this change and showed a small but linear increase in magnitude by a factor



of 0.25 as the tube length was increased by a factor of 4.7. This linear rise
in damping is probably due to the increased frictiomal forces along the walls

of the tube since viscous damping is directly a function of surface area.

The frequency response curves also provided useful information
about the extent of coupling which occurs between the system's components.
As the connecting tube lengths were shortened thus increasing the rooms'
resonant frequencies, the spectra of the window's acceleration showed an
increased presence of the frequencies associated with the rooms' resonances.
An example of this condition is shown in Figure 3 which is a set of response
spectra corresponding to a connecting tube length of 45 mm. Note, however,
that an expected similar change in the content of the Room 2 pressure spectrum
(Figure 3d) is not to be found. The magnitude of the component associated
with the window frequency in thils plot 1s not substantially different from
that shown in the lightly coupled case observed in Figure 2d. This behaviour

is yet without explanation.
6. COMPUTER SIMULATION

A comparative study of the problem was conducted on an E.A.I.580
analog computer. Equations (14) and (15) were suitably scaled with the
magnitude scaling factors being based on the following estimated maximum

values of the variables

5.0 cm/s El = 50 cm/s2 5
30 cm/s .

X 0.01 cm ; il

0.05 cm b'd

X

A time scaling factor of B = 500 was chosen so that, with the
computer in its fast mode of operation, transient solutions could be obtained
in real time for immediate spectral analysis. With the computer in its slow

mode the output could be recorded on a pen recorder.

The final scaled equations may then be written

[_551/508] = %lr {-A[%,/5] - B[100 xl] ~ c[100 xl] + D[20 xe] + E[1]}  (19)
[x,/8] = i—é {-F[%,/30] - @[20 x,] - H[20 x,] + I[100 %]} (20)

10



where the coefficilents have the values

L 2 2,3
A = c /208 5 B = kJ'_/lO B c = (Ai) poco/lO BV 3
- 2
D = AiA2poco/2.103BVl; E = 1/1033 5 F = 30c,/B ;
- i _ a2 2 . o 2
G A2poco/20 BV, 3 H Aepoco/ZOBvl ; I = A1A2poc0/lOOSvl .

The quantities mi and mé were isolated so that individual potentio-

meters could be set up on the computer to represent them.

A scaled version of equation (11) is also required to give the pressure

in the first room. The scaled pressure equation may be written

[P,/100] = J[i00 x,] - K[20 x,] (21)

2 41 4
pocoAl/lO v

where J 1

2 3
pocoAz/z.lO v

=
[

1t

The pressure in the second room was assumed to be proportional to
the voltage representing x,, as shown by equation (13). Values for the
quantities involved in the above coefficients were obtained from the

experiments conducted on the physical model.

Instead of applying an external forcing function, F(t), an initial
velocity was imparted to the window in the form of an initial condition on the
appropriate integrator in the computer. Provided the durstion of the force
is small compared with the natural period of the oscillator under eiamination,
an initial velocity can be thought of as equivalent to an exciting force. For
a system initially at rest, the velocity, v, acquired under the action of an
impulsive force, is v = fEF(t) dt/m, where m is the mass of the system and
e is the duration of the force. This expression may be written: v = Fe/m,

where F is the equivalent steady force operating for a time €.

As an initial check on the program, the frequencies corresponding
to the uncoupled window and room resonances were measured with an electronic
counter. Fine tuning of any frequency that was not in agreement with the

experimental values was made by a small adjustment of the potentiometers

11



representing the masses, mi and mé. A critical test of the validity of the
governing equations rested on the question whether or not the spectra of the
simulated response data was the same as that of the experimental response
data. To facilitate such a comparison, the method of on~line digital computer
analysis which was used in the experimental study was applied. An initial
velocity in the form of a step function was applied to the window mass, mi,
and the corresponding responses of the window acceleration and room pressures
were consecutively recorded and analysed on the digital computer. This type
of analysis was performed for a number of different values of mé and 5
corresponding to the different connecting tube lengths used in the experiment.
A set of typical results from this series is shown in Figure 4 which gives the
response data in both the time and frequency domain. This particular set

of simulated reéponse data corresponds to the set of actual response data
shown in Figure 2. An overall comparison between the simulated and actual

response data is given in tabulated form in Table 1.

T. COMPARISON OF ACTUAL AND SIMULATED EXPERIMENTAL
RESULTS

The results of both the actual and simulated experiments supported
the notion that the transient response of a window influences and is influenced
by the Helmholtz resonances of the open room which it encloses. A measure of
the mutual influence or coupling indicated that the dynamics of the window,
room and door combination behave much like that given by the system's equivalent
lumped element representation. A review of Figures 2 and 4 and Table 1 shows
for the most part good agreement between theory and experiment in terms of
phase, amplitude and frequency content. A discrepancy is apparent, however,
between the spectral content of the actual and simulated response of the
Room 2 pressure. By some yet unexplained mechanism, the slug of fluid contained
in the coupling tube acts to filter out the component at the window frequency.
Since the tube lengths are appreciable in comparison to the wavelength of the
pressure disturbances they transmit, it would seem reasonable to assume that
the motion of the fluid in the coupling tube deviates somewhat from that of
its idealised incompressible model. A velocity probe in this region within

the coupling tube would help to resolve this question.

12



PART II: COUPLING STUDIES ON SIMULATED MODELS

1. FREQUENCY COINCIDENCE BETWEEN THE
WINDOW AND ROOM RESONANCES

The near agreement between the model's actual response data and that
of its mathematical representation suggested that the computer study could be
extended within reasonable limits to include other conditions as well. One
condition for the dynamic amplification of the window's response would be the
case where the frequency of the rooms' Helmholtz resonance was coincident with
that of the window's fundamental mode. To obtain such a coincidence of
frequencies with the simulated model, the rooms' Helmholtz frequency was
progressively increased by altering the mé and ¢, potentiometers. The window
displacement and corresponding room pressures were recorded and analysed for
each potentiometer setting prior to and at coincidence. The condition of
frequency coincidence produced no appreciable change in the maximum window
displacement for a given foreing function. However, the maximum amplitude of
the pressure in Room 2 exhibited a considerable increase. This amount was
a factor of 3.2 above that obtained when the room frequency was 1/4 of the
window frequency. This increased coupling was also evident in the frequency
spectra of the window's acceleration. As the condition of frequency coinci-
dence was approached, the Fourier component identified with the rooms' Helmholtz
frequency increased proportionately in magnitude, the extent of which can be
seen over a short range of frequency ratios in Table 1. It is interesting to
note that no similar change occurred in Room 2 pressure spectra. Approaching
the condition of frequency resonance had little effect on the relative
magnitudes of the Fourier components corresponding to the window and Helmholtz
room resonances. Recall that this same effect was also noticed in the

experiments on the physical model.

Although the condition of frequency coincidence produced no dramatic
changes in the maximum displacement of the window, the possible side effects
of the substantial increases in the maxima of the corresponding room pressures
bear mention. At coincidence, the maxima of the room pressures were nearly
of the same magnitude with the second room's being slightly higher than the

first room's. In terms of sound pressure level, the magnitude of these
b

13



maximum room pressures measured approximately 100 dB. On a full scale basis,
this is the sound pressure level that would result from a 0.5 mm displacement
of a window (2 x 3 m) backed by two adjoining rooms (each 4 x 6 x 8 m).
Although the low frequency ranges of room Helmholtz resonances would usually
fall below the hearing range of humans, the intensity level at which they
occur eould be quite severe and could easily produce startle effects among

the rooms' inhabitants.
2. MODEL OF TWO WINDOWS IN A SINGLE ROOM

Since rooms usually contain more than one window, it is important
to know on a quantitative basis how efficiently the enclosed room air couples
the responses of two similar windows. Of particular interest would be a
measure of the extent of coupling as a function of room volume and nearness
of window frequencies. To develop appropriate coupled equations to describe
these conditions, the same procedure as described in Part I was followed.

By using lumped element representation, equations describing the case of two

windows enclosing a single room were developed in the form

2 2 tat 2
(A1)%p cx ATALp ¢x
. . 172
P(t) = mixl +oeqxy * kixl + = Vo ol _ ' Vo °©2 (22)
1 1
2 2 1at 2
' ACA
0 =m's . ) (AZ) 5% 172P6%%1
= myx, + ey¥y + k2x2 + 7 - 5V (23)
- 1 1

The constant coefficients in the above equations represent those
same quantities as given in Part I, but now subscripts 1 and 2 are representative

of the first window and second window respectively.

To guide the computer study, the physical model used in Part I was
modified to a single room arrangement having two windows mounted in opposite
walls. Since the dimensions and materials of the room and window components
were unchanged, the constant coefficients associated with each component were
also considered to be unchanged. Thus in setting up equations (22) and (23)
for the computer study, the values for the constant coefficients initially
were chosen to be the same as those obtained from the fregquency analyses of
the various responses in Part I. For this series of computer simulations,

the forcing function, F(t), was generated externally in the form of a single

14



rectangular pulse which was suitably scaled both in magnitude and period.

Using the previous time and magnitude scaling, the scaled form of

equations (22) and (23) can be written as

1 2 1
[gog} = uy {—A[—S——] - B[100x,] - c[100x;] + D[100x,] + E[1]} (24)
[fg_] = 24 F—E G[1o0x,] - H[10Ox,] + I[100x.]} (25)
508 L P *od T *2 X 5
where A = F = c¢/208
B = G = k'/thB
c =D =1H =1 = poci(A')g/lo“ve
E = 1/10% .

Since the maximum bending stress in a window is directly proportional
to its maximum centre deflection, it was decided that a useful measure of
coupling between windows would be given in expressing the maximum displace-
ment of the second window as a fractional part of the maximum displacement
of the first window, i.e. (x2)max/(xl)max' The functional dependence of
this ratio on room size and nearness of window frequencies was determined
by varying the potentiometers corresponding to the room volume, V, and the
mass of the second window, mé, respectively. The results are given in

Figures 5 and 6.

Similar tests were also performed on the actual model. The single
data point which was obtained fell reasonably close to the corresponding

point on the simulated curves.

The inverse relationship between the coupling of the two identical
windows and the room volume is more gentle than might be expected. An
increase in room size by a factor of 3 only decreased the coupling by 1/k.
However, as a precautionary note, it should be recalled that an assumption
in the simuktion is that the pressure disturbance be everywhere uniform in

the room. As the room volume is made larger and larger, this condition

15



might be difficult to realize physically and thus Figure 5 should be

interpreted with care.

For the given room volume, Y, the degree of coupling between two
windows having nearly the same frequencies can be considered to be quite
strong. Even where the frequencies differ by as much as a factor of +0.l4,
the second window responds at nearly 1/2 of the first window's maximum
displacement. With such strong coupling, it is easy to imagine certain
situations where, say, an external impulse reaches a window before or after
it has been excited internally through the coupling action of another window.
Then, depending on the phase relative to the window motion, the external
force would either act to decrease or increase the maximum displacement of
the window by an amount proportional to the richness of its spectral content

at the window's resonant frequency.

3. MODEL OF TWO MUTUALLY JOINED ROOMS EACH CONTAINING
A WINDOW

Another common arrangement of room-window combinations is the case
where two rooms, each containing a window, are joined by a common door or
hallway. As shown in the earlier cases, under certain conditions, the
transient motion of a window can excite the Helmholtz resonance in the open
room it encloses. If a second room, also containing a window, shares the
same opening, e.g. a doorway, the pressure disturbances in the second room
due to the Helmholtz resonances could cause its window to respond. OF
particular interest would be the extent of this response as a function of
the nearness of the frequency of the window to that of the Helmholtz room

resonance.

To study this condition, equations were set up according to the

procedure developed in Part I in the form

2 2 2
p cT(aY)x p cTA'A x
- s . ' 001" "1 ool 22
F(t) mix, + ejX) + kix) + A A (26)
2 2 2 2 2., o
0 = m's . pocoA2X2 pocoA2x2 pocoAl'A2X.l pocoA2A3x3
= mpXy +ocp¥y + Ty - v - v (27)
1 2 1 2
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2
A Al'x
= (I 3 ' __%0 2732
0 m 3x3 + c3x3 + k3x3 + V2 V2 (28)

2, ,\2
poco(A3) X3 pC

where the subscripts 1, 2, and 3 are representative of the window in the first
room, the air slug contained in the connecting chamber, and the window in the
second room respectively. Since the second window was identical to the first
window and all else was unchanged, the vaelues for the constant coefficients

in the above equations were the same as those obtained experimentally in

Part I. The forcing function, F(t), was generated externally in the form of

a single rectangular pulse which was suitably scaled both for magnitude and
for period. Using the same time and magnitude scaling as in Part I, the

scaled form of the equations (26), (27) and (28) can be written as

_%E] = E‘_i {-A :5_1 - B[1oox,] - c[100x,] + D[20x,] + E[L]} (29)
¥, 1 3 .
_T} = a3 {-F 50| - ¢[eox,] - H[20x,] + 1f100% ] + JI__100x3J} (30)
-fi—] = 2. (x 3] . L[100x,] - M[100x.] + N[20x,]} (31)
| 508 my 15 3 3 2
where A = K = ¢/208

B = L = k'/thB

C = M = poci(A')E/th V6

D = N = pec2(a,)(a")/2 x 10° Vg

E = 1/108

F = 30 c2/B2 ,

¢ = = Agp co/20 VB

J = I = pocoA'AZ/lOO V8 .

A useful expression for examining the extent of coupling between
windows in separate rooms joined with a common doorway is given as the ratio
of the two windows' maximum displacements, i.e. (x3)max/(xl) . A measure

max
of this ratio was determined first for the condition of holding the window
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frequency constant while changing that of the rooms' Helmholtz resonance,
and second, for the condition at a fixed room Helmholtz frequency with
differing ratios of window frequencies. These changes were made on the
computer circuit by adjusting the potentiometers corresponding to the masses

mé and mé. The results of these studies are shown in Figures T and 8.

To check experimentally the computer study, the physical model
described in Part I was modified accordingly by adding a window to the
second room. The model thus consisted of two identical rooms with two

identical windows joined by connecting tubes of variable lengths.

Figure T shows that two identical windows can couple quite strongly
even when each is located in separate rooms which are connected by a common
hallway. The strength of the coupling is directly a function of the proximity
of the windows' resonant frequency to that of the rooms' Helmholtz resonances.
Near frequency coincidence the second window reaches nearly the same maximum
displacement as the first window. If, during the maximum response cycle of
the second window, an external impulsive load was applied, e.g. a reflected

sonic boom, the maximum total displacement could be considerable.

Figure 8 shows the dependence of the coupling on the proximity of
the two window frequencies for two fixed frequencies of room Helmholtz
resonances. As is the previous case involving two windows located in the
same room, the coupling remains quite high over a wide range of frequency
ratios. Even where these ratios differ by as much as a factor of +0.30, the

second window responds at nearly 1/2 the maximum displacement of the first

window.

CONCLUSIONS

In connected rooms which are enclosed by large windows, motion of
the windows in their fundamental modes influences and is influenced by the

Helmholtz resonances of the rooms.

Mathematical descriptionsof such systems which utilise equivalent
lumped element representations produce response data which closely resemble

those obtained from experiments performed on physical models.
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A coincidence of frequencies between the window and room cavity

resonance produced no increase in the maximum response of the window for a

given loading. However, the room pressure reached a maximum which was 3.2

times higher than that corresponding to the case where the two frequencies

differed by a factor of L.

When two similar, large windows share the same room, the motion of

one can cause the other to respond with nearly the same maximum amplitude.

by
of
at

With two similar, large windows located in different rooms joined
a common doorway, the initiation of the Helmholtz room resonance by motion
the window in one room can cause the window in the adjoining room to respond

nearly the same maximum amplitude.
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Frequency Ratio of
Two Major Fourier
Components in
Response Spectra

Magnitude Ratio of Two Major Fourier Components in

(

Response Spectra

Comp. at Helmholtz Frequency

Comp. at Window Frequency

)

(Haiﬁggit;rzreq') Window Pressure Pressure
q- Acceleration Room 1 Room 2
Exp. Sim. Exp. Sim. Exp. Sim. Exp. Sim.
0.71 - 0.72 - 1.05 - 3.85 -
0.61 0.60 0.25 0.19 1.18 1.97 5.40 2.05
0.55 0.5k 0.1k 0.10 1.01 1.11 6.53 1.71
0.52 0.52 0.09 0.07 0.81 0.81 6.01 1.60
0.49 0.49 0.07 0.07 0.81 0.79 7.50 2.06
TABLE 1: COMPARISON OF SPECTRAL DATA BETWEEN EXPERIMENT AND

SIMULATION
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